\(\int \frac {\csc (e+f x) \sqrt {a+a \sin (e+f x)}}{c+d \sin (e+f x)} \, dx\) [23]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (verified)
   Maple [A] (verified)
   Fricas [B] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [A] (verification not implemented)
   Mupad [F(-1)]

Optimal result

Integrand size = 33, antiderivative size = 105 \[ \int \frac {\csc (e+f x) \sqrt {a+a \sin (e+f x)}}{c+d \sin (e+f x)} \, dx=-\frac {2 \sqrt {a} \text {arctanh}\left (\frac {\sqrt {a} \cos (e+f x)}{\sqrt {a+a \sin (e+f x)}}\right )}{c f}+\frac {2 \sqrt {a} \sqrt {d} \text {arctanh}\left (\frac {\sqrt {a} \sqrt {d} \cos (e+f x)}{\sqrt {c+d} \sqrt {a+a \sin (e+f x)}}\right )}{c \sqrt {c+d} f} \]

[Out]

-2*arctanh(cos(f*x+e)*a^(1/2)/(a+a*sin(f*x+e))^(1/2))*a^(1/2)/c/f+2*arctanh(cos(f*x+e)*a^(1/2)*d^(1/2)/(c+d)^(
1/2)/(a+a*sin(f*x+e))^(1/2))*a^(1/2)*d^(1/2)/c/f/(c+d)^(1/2)

Rubi [A] (verified)

Time = 0.21 (sec) , antiderivative size = 105, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.121, Rules used = {3013, 2852, 212, 214} \[ \int \frac {\csc (e+f x) \sqrt {a+a \sin (e+f x)}}{c+d \sin (e+f x)} \, dx=\frac {2 \sqrt {a} \sqrt {d} \text {arctanh}\left (\frac {\sqrt {a} \sqrt {d} \cos (e+f x)}{\sqrt {c+d} \sqrt {a \sin (e+f x)+a}}\right )}{c f \sqrt {c+d}}-\frac {2 \sqrt {a} \text {arctanh}\left (\frac {\sqrt {a} \cos (e+f x)}{\sqrt {a \sin (e+f x)+a}}\right )}{c f} \]

[In]

Int[(Csc[e + f*x]*Sqrt[a + a*Sin[e + f*x]])/(c + d*Sin[e + f*x]),x]

[Out]

(-2*Sqrt[a]*ArcTanh[(Sqrt[a]*Cos[e + f*x])/Sqrt[a + a*Sin[e + f*x]]])/(c*f) + (2*Sqrt[a]*Sqrt[d]*ArcTanh[(Sqrt
[a]*Sqrt[d]*Cos[e + f*x])/(Sqrt[c + d]*Sqrt[a + a*Sin[e + f*x]])])/(c*Sqrt[c + d]*f)

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 214

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x/Rt[-a/b, 2]], x] /; FreeQ[{a, b},
x] && NegQ[a/b]

Rule 2852

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[-2*(
b/f), Subst[Int[1/(b*c + a*d - d*x^2), x], x, b*(Cos[e + f*x]/Sqrt[a + b*Sin[e + f*x]])], x] /; FreeQ[{a, b, c
, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rule 3013

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/(sin[(e_.) + (f_.)*(x_)]*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)])
), x_Symbol] :> Dist[1/c, Int[Sqrt[a + b*Sin[e + f*x]]/Sin[e + f*x], x], x] - Dist[d/c, Int[Sqrt[a + b*Sin[e +
 f*x]]/(c + d*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0]

Rubi steps \begin{align*} \text {integral}& = \frac {\int \csc (e+f x) \sqrt {a+a \sin (e+f x)} \, dx}{c}-\frac {d \int \frac {\sqrt {a+a \sin (e+f x)}}{c+d \sin (e+f x)} \, dx}{c} \\ & = -\frac {(2 a) \text {Subst}\left (\int \frac {1}{a-x^2} \, dx,x,\frac {a \cos (e+f x)}{\sqrt {a+a \sin (e+f x)}}\right )}{c f}+\frac {(2 a d) \text {Subst}\left (\int \frac {1}{a c+a d-d x^2} \, dx,x,\frac {a \cos (e+f x)}{\sqrt {a+a \sin (e+f x)}}\right )}{c f} \\ & = -\frac {2 \sqrt {a} \text {arctanh}\left (\frac {\sqrt {a} \cos (e+f x)}{\sqrt {a+a \sin (e+f x)}}\right )}{c f}+\frac {2 \sqrt {a} \sqrt {d} \text {arctanh}\left (\frac {\sqrt {a} \sqrt {d} \cos (e+f x)}{\sqrt {c+d} \sqrt {a+a \sin (e+f x)}}\right )}{c \sqrt {c+d} f} \\ \end{align*}

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3 in optimal.

Time = 6.01 (sec) , antiderivative size = 746, normalized size of antiderivative = 7.10 \[ \int \frac {\csc (e+f x) \sqrt {a+a \sin (e+f x)}}{c+d \sin (e+f x)} \, dx=-\frac {\left (\frac {1}{8}-\frac {i}{8}\right ) \left ((4+4 i) \sqrt {c+d} \left (\log \left (1+\cos \left (\frac {1}{2} (e+f x)\right )-\sin \left (\frac {1}{2} (e+f x)\right )\right )-\log \left (1-\cos \left (\frac {1}{2} (e+f x)\right )+\sin \left (\frac {1}{2} (e+f x)\right )\right )\right )+\sqrt {d} \text {RootSum}\left [-d+2 i c e^{i e} \text {$\#$1}^2+d e^{2 i e} \text {$\#$1}^4\&,\frac {(1+i) d \sqrt {e^{-i e}} f x-(2-2 i) d \sqrt {e^{-i e}} \log \left (e^{\frac {i f x}{2}}-\text {$\#$1}\right )-i \sqrt {d} \sqrt {c+d} f x \text {$\#$1}+2 \sqrt {d} \sqrt {c+d} \log \left (e^{\frac {i f x}{2}}-\text {$\#$1}\right ) \text {$\#$1}+\frac {(1-i) c f x \text {$\#$1}^2}{\sqrt {e^{-i e}}}+\frac {(2+2 i) c \log \left (e^{\frac {i f x}{2}}-\text {$\#$1}\right ) \text {$\#$1}^2}{\sqrt {e^{-i e}}}-\sqrt {d} \sqrt {c+d} e^{i e} f x \text {$\#$1}^3-2 i \sqrt {d} \sqrt {c+d} e^{i e} \log \left (e^{\frac {i f x}{2}}-\text {$\#$1}\right ) \text {$\#$1}^3}{-i d-c e^{i e} \text {$\#$1}^2}\&\right ] \left (\cos \left (\frac {e}{2}\right )+i \sin \left (\frac {e}{2}\right )\right )+\sqrt {d} \text {RootSum}\left [-d+2 i c e^{i e} \text {$\#$1}^2+d e^{2 i e} \text {$\#$1}^4\&,\frac {(1-i) d \sqrt {e^{-i e}} f x+(2+2 i) d \sqrt {e^{-i e}} \log \left (e^{\frac {i f x}{2}}-\text {$\#$1}\right )+\sqrt {d} \sqrt {c+d} f x \text {$\#$1}+2 i \sqrt {d} \sqrt {c+d} \log \left (e^{\frac {i f x}{2}}-\text {$\#$1}\right ) \text {$\#$1}-\frac {(1+i) c f x \text {$\#$1}^2}{\sqrt {e^{-i e}}}+\frac {(2-2 i) c \log \left (e^{\frac {i f x}{2}}-\text {$\#$1}\right ) \text {$\#$1}^2}{\sqrt {e^{-i e}}}-i \sqrt {d} \sqrt {c+d} e^{i e} f x \text {$\#$1}^3+2 \sqrt {d} \sqrt {c+d} e^{i e} \log \left (e^{\frac {i f x}{2}}-\text {$\#$1}\right ) \text {$\#$1}^3}{d-i c e^{i e} \text {$\#$1}^2}\&\right ] \left (\cos \left (\frac {e}{2}\right )+i \sin \left (\frac {e}{2}\right )\right )\right ) \sqrt {a (1+\sin (e+f x))}}{c \sqrt {c+d} f \left (\cos \left (\frac {1}{2} (e+f x)\right )+\sin \left (\frac {1}{2} (e+f x)\right )\right )} \]

[In]

Integrate[(Csc[e + f*x]*Sqrt[a + a*Sin[e + f*x]])/(c + d*Sin[e + f*x]),x]

[Out]

((-1/8 + I/8)*((4 + 4*I)*Sqrt[c + d]*(Log[1 + Cos[(e + f*x)/2] - Sin[(e + f*x)/2]] - Log[1 - Cos[(e + f*x)/2]
+ Sin[(e + f*x)/2]]) + Sqrt[d]*RootSum[-d + (2*I)*c*E^(I*e)*#1^2 + d*E^((2*I)*e)*#1^4 & , ((1 + I)*d*Sqrt[E^((
-I)*e)]*f*x - (2 - 2*I)*d*Sqrt[E^((-I)*e)]*Log[E^((I/2)*f*x) - #1] - I*Sqrt[d]*Sqrt[c + d]*f*x*#1 + 2*Sqrt[d]*
Sqrt[c + d]*Log[E^((I/2)*f*x) - #1]*#1 + ((1 - I)*c*f*x*#1^2)/Sqrt[E^((-I)*e)] + ((2 + 2*I)*c*Log[E^((I/2)*f*x
) - #1]*#1^2)/Sqrt[E^((-I)*e)] - Sqrt[d]*Sqrt[c + d]*E^(I*e)*f*x*#1^3 - (2*I)*Sqrt[d]*Sqrt[c + d]*E^(I*e)*Log[
E^((I/2)*f*x) - #1]*#1^3)/((-I)*d - c*E^(I*e)*#1^2) & ]*(Cos[e/2] + I*Sin[e/2]) + Sqrt[d]*RootSum[-d + (2*I)*c
*E^(I*e)*#1^2 + d*E^((2*I)*e)*#1^4 & , ((1 - I)*d*Sqrt[E^((-I)*e)]*f*x + (2 + 2*I)*d*Sqrt[E^((-I)*e)]*Log[E^((
I/2)*f*x) - #1] + Sqrt[d]*Sqrt[c + d]*f*x*#1 + (2*I)*Sqrt[d]*Sqrt[c + d]*Log[E^((I/2)*f*x) - #1]*#1 - ((1 + I)
*c*f*x*#1^2)/Sqrt[E^((-I)*e)] + ((2 - 2*I)*c*Log[E^((I/2)*f*x) - #1]*#1^2)/Sqrt[E^((-I)*e)] - I*Sqrt[d]*Sqrt[c
 + d]*E^(I*e)*f*x*#1^3 + 2*Sqrt[d]*Sqrt[c + d]*E^(I*e)*Log[E^((I/2)*f*x) - #1]*#1^3)/(d - I*c*E^(I*e)*#1^2) &
]*(Cos[e/2] + I*Sin[e/2]))*Sqrt[a*(1 + Sin[e + f*x])])/(c*Sqrt[c + d]*f*(Cos[(e + f*x)/2] + Sin[(e + f*x)/2]))

Maple [A] (verified)

Time = 0.58 (sec) , antiderivative size = 120, normalized size of antiderivative = 1.14

method result size
default \(\frac {2 \left (1+\sin \left (f x +e \right )\right ) \sqrt {-a \left (\sin \left (f x +e \right )-1\right )}\, \left (d \,\operatorname {arctanh}\left (\frac {\sqrt {-a \left (\sin \left (f x +e \right )-1\right )}\, d}{\sqrt {a \left (c +d \right ) d}}\right ) a^{\frac {3}{2}}-\operatorname {arctanh}\left (\frac {\sqrt {-a \left (\sin \left (f x +e \right )-1\right )}}{\sqrt {a}}\right ) a \sqrt {a \left (c +d \right ) d}\right )}{\sqrt {a}\, c \sqrt {a \left (c +d \right ) d}\, \cos \left (f x +e \right ) \sqrt {a +a \sin \left (f x +e \right )}\, f}\) \(120\)

[In]

int((a+a*sin(f*x+e))^(1/2)/sin(f*x+e)/(c+d*sin(f*x+e)),x,method=_RETURNVERBOSE)

[Out]

2/a^(1/2)*(1+sin(f*x+e))*(-a*(sin(f*x+e)-1))^(1/2)*(d*arctanh((-a*(sin(f*x+e)-1))^(1/2)*d/(a*(c+d)*d)^(1/2))*a
^(3/2)-arctanh((-a*(sin(f*x+e)-1))^(1/2)/a^(1/2))*a*(a*(c+d)*d)^(1/2))/c/(a*(c+d)*d)^(1/2)/cos(f*x+e)/(a+a*sin
(f*x+e))^(1/2)/f

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 242 vs. \(2 (85) = 170\).

Time = 0.58 (sec) , antiderivative size = 781, normalized size of antiderivative = 7.44 \[ \int \frac {\csc (e+f x) \sqrt {a+a \sin (e+f x)}}{c+d \sin (e+f x)} \, dx=\left [\frac {\sqrt {\frac {a d}{c + d}} \log \left (\frac {a d^{2} \cos \left (f x + e\right )^{3} - a c^{2} - 2 \, a c d - a d^{2} - {\left (6 \, a c d + 7 \, a d^{2}\right )} \cos \left (f x + e\right )^{2} + 4 \, {\left ({\left (c d + d^{2}\right )} \cos \left (f x + e\right )^{2} - c^{2} - 4 \, c d - 3 \, d^{2} - {\left (c^{2} + 3 \, c d + 2 \, d^{2}\right )} \cos \left (f x + e\right ) + {\left (c^{2} + 4 \, c d + 3 \, d^{2} + {\left (c d + d^{2}\right )} \cos \left (f x + e\right )\right )} \sin \left (f x + e\right )\right )} \sqrt {a \sin \left (f x + e\right ) + a} \sqrt {\frac {a d}{c + d}} - {\left (a c^{2} + 8 \, a c d + 9 \, a d^{2}\right )} \cos \left (f x + e\right ) + {\left (a d^{2} \cos \left (f x + e\right )^{2} - a c^{2} - 2 \, a c d - a d^{2} + 2 \, {\left (3 \, a c d + 4 \, a d^{2}\right )} \cos \left (f x + e\right )\right )} \sin \left (f x + e\right )}{d^{2} \cos \left (f x + e\right )^{3} + {\left (2 \, c d + d^{2}\right )} \cos \left (f x + e\right )^{2} - c^{2} - 2 \, c d - d^{2} - {\left (c^{2} + d^{2}\right )} \cos \left (f x + e\right ) + {\left (d^{2} \cos \left (f x + e\right )^{2} - 2 \, c d \cos \left (f x + e\right ) - c^{2} - 2 \, c d - d^{2}\right )} \sin \left (f x + e\right )}\right ) + \sqrt {a} \log \left (\frac {a \cos \left (f x + e\right )^{3} - 7 \, a \cos \left (f x + e\right )^{2} - 4 \, {\left (\cos \left (f x + e\right )^{2} + {\left (\cos \left (f x + e\right ) + 3\right )} \sin \left (f x + e\right ) - 2 \, \cos \left (f x + e\right ) - 3\right )} \sqrt {a \sin \left (f x + e\right ) + a} \sqrt {a} - 9 \, a \cos \left (f x + e\right ) + {\left (a \cos \left (f x + e\right )^{2} + 8 \, a \cos \left (f x + e\right ) - a\right )} \sin \left (f x + e\right ) - a}{\cos \left (f x + e\right )^{3} + \cos \left (f x + e\right )^{2} + {\left (\cos \left (f x + e\right )^{2} - 1\right )} \sin \left (f x + e\right ) - \cos \left (f x + e\right ) - 1}\right )}{2 \, c f}, \frac {2 \, \sqrt {-\frac {a d}{c + d}} \arctan \left (\frac {\sqrt {a \sin \left (f x + e\right ) + a} {\left (d \sin \left (f x + e\right ) - c - 2 \, d\right )} \sqrt {-\frac {a d}{c + d}}}{2 \, a d \cos \left (f x + e\right )}\right ) + \sqrt {a} \log \left (\frac {a \cos \left (f x + e\right )^{3} - 7 \, a \cos \left (f x + e\right )^{2} - 4 \, {\left (\cos \left (f x + e\right )^{2} + {\left (\cos \left (f x + e\right ) + 3\right )} \sin \left (f x + e\right ) - 2 \, \cos \left (f x + e\right ) - 3\right )} \sqrt {a \sin \left (f x + e\right ) + a} \sqrt {a} - 9 \, a \cos \left (f x + e\right ) + {\left (a \cos \left (f x + e\right )^{2} + 8 \, a \cos \left (f x + e\right ) - a\right )} \sin \left (f x + e\right ) - a}{\cos \left (f x + e\right )^{3} + \cos \left (f x + e\right )^{2} + {\left (\cos \left (f x + e\right )^{2} - 1\right )} \sin \left (f x + e\right ) - \cos \left (f x + e\right ) - 1}\right )}{2 \, c f}\right ] \]

[In]

integrate((a+a*sin(f*x+e))^(1/2)/sin(f*x+e)/(c+d*sin(f*x+e)),x, algorithm="fricas")

[Out]

[1/2*(sqrt(a*d/(c + d))*log((a*d^2*cos(f*x + e)^3 - a*c^2 - 2*a*c*d - a*d^2 - (6*a*c*d + 7*a*d^2)*cos(f*x + e)
^2 + 4*((c*d + d^2)*cos(f*x + e)^2 - c^2 - 4*c*d - 3*d^2 - (c^2 + 3*c*d + 2*d^2)*cos(f*x + e) + (c^2 + 4*c*d +
 3*d^2 + (c*d + d^2)*cos(f*x + e))*sin(f*x + e))*sqrt(a*sin(f*x + e) + a)*sqrt(a*d/(c + d)) - (a*c^2 + 8*a*c*d
 + 9*a*d^2)*cos(f*x + e) + (a*d^2*cos(f*x + e)^2 - a*c^2 - 2*a*c*d - a*d^2 + 2*(3*a*c*d + 4*a*d^2)*cos(f*x + e
))*sin(f*x + e))/(d^2*cos(f*x + e)^3 + (2*c*d + d^2)*cos(f*x + e)^2 - c^2 - 2*c*d - d^2 - (c^2 + d^2)*cos(f*x
+ e) + (d^2*cos(f*x + e)^2 - 2*c*d*cos(f*x + e) - c^2 - 2*c*d - d^2)*sin(f*x + e))) + sqrt(a)*log((a*cos(f*x +
 e)^3 - 7*a*cos(f*x + e)^2 - 4*(cos(f*x + e)^2 + (cos(f*x + e) + 3)*sin(f*x + e) - 2*cos(f*x + e) - 3)*sqrt(a*
sin(f*x + e) + a)*sqrt(a) - 9*a*cos(f*x + e) + (a*cos(f*x + e)^2 + 8*a*cos(f*x + e) - a)*sin(f*x + e) - a)/(co
s(f*x + e)^3 + cos(f*x + e)^2 + (cos(f*x + e)^2 - 1)*sin(f*x + e) - cos(f*x + e) - 1)))/(c*f), 1/2*(2*sqrt(-a*
d/(c + d))*arctan(1/2*sqrt(a*sin(f*x + e) + a)*(d*sin(f*x + e) - c - 2*d)*sqrt(-a*d/(c + d))/(a*d*cos(f*x + e)
)) + sqrt(a)*log((a*cos(f*x + e)^3 - 7*a*cos(f*x + e)^2 - 4*(cos(f*x + e)^2 + (cos(f*x + e) + 3)*sin(f*x + e)
- 2*cos(f*x + e) - 3)*sqrt(a*sin(f*x + e) + a)*sqrt(a) - 9*a*cos(f*x + e) + (a*cos(f*x + e)^2 + 8*a*cos(f*x +
e) - a)*sin(f*x + e) - a)/(cos(f*x + e)^3 + cos(f*x + e)^2 + (cos(f*x + e)^2 - 1)*sin(f*x + e) - cos(f*x + e)
- 1)))/(c*f)]

Sympy [F]

\[ \int \frac {\csc (e+f x) \sqrt {a+a \sin (e+f x)}}{c+d \sin (e+f x)} \, dx=\int \frac {\sqrt {a \left (\sin {\left (e + f x \right )} + 1\right )}}{\left (c + d \sin {\left (e + f x \right )}\right ) \sin {\left (e + f x \right )}}\, dx \]

[In]

integrate((a+a*sin(f*x+e))**(1/2)/sin(f*x+e)/(c+d*sin(f*x+e)),x)

[Out]

Integral(sqrt(a*(sin(e + f*x) + 1))/((c + d*sin(e + f*x))*sin(e + f*x)), x)

Maxima [F]

\[ \int \frac {\csc (e+f x) \sqrt {a+a \sin (e+f x)}}{c+d \sin (e+f x)} \, dx=\int { \frac {\sqrt {a \sin \left (f x + e\right ) + a}}{{\left (d \sin \left (f x + e\right ) + c\right )} \sin \left (f x + e\right )} \,d x } \]

[In]

integrate((a+a*sin(f*x+e))^(1/2)/sin(f*x+e)/(c+d*sin(f*x+e)),x, algorithm="maxima")

[Out]

integrate(sqrt(a*sin(f*x + e) + a)/((d*sin(f*x + e) + c)*sin(f*x + e)), x)

Giac [A] (verification not implemented)

none

Time = 0.34 (sec) , antiderivative size = 143, normalized size of antiderivative = 1.36 \[ \int \frac {\csc (e+f x) \sqrt {a+a \sin (e+f x)}}{c+d \sin (e+f x)} \, dx=\frac {\sqrt {2} {\left (\frac {2 \, \sqrt {2} d \arctan \left (\frac {\sqrt {2} d \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )}{\sqrt {-c d - d^{2}}}\right ) \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right )}{\sqrt {-c d - d^{2}} c} - \frac {\sqrt {2} \log \left (\frac {{\left | -2 \, \sqrt {2} + 4 \, \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right ) \right |}}{{\left | 2 \, \sqrt {2} + 4 \, \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right ) \right |}}\right ) \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right )}{c}\right )} \sqrt {a}}{2 \, f} \]

[In]

integrate((a+a*sin(f*x+e))^(1/2)/sin(f*x+e)/(c+d*sin(f*x+e)),x, algorithm="giac")

[Out]

1/2*sqrt(2)*(2*sqrt(2)*d*arctan(sqrt(2)*d*sin(-1/4*pi + 1/2*f*x + 1/2*e)/sqrt(-c*d - d^2))*sgn(cos(-1/4*pi + 1
/2*f*x + 1/2*e))/(sqrt(-c*d - d^2)*c) - sqrt(2)*log(abs(-2*sqrt(2) + 4*sin(-1/4*pi + 1/2*f*x + 1/2*e))/abs(2*s
qrt(2) + 4*sin(-1/4*pi + 1/2*f*x + 1/2*e)))*sgn(cos(-1/4*pi + 1/2*f*x + 1/2*e))/c)*sqrt(a)/f

Mupad [F(-1)]

Timed out. \[ \int \frac {\csc (e+f x) \sqrt {a+a \sin (e+f x)}}{c+d \sin (e+f x)} \, dx=\int \frac {\sqrt {a+a\,\sin \left (e+f\,x\right )}}{\sin \left (e+f\,x\right )\,\left (c+d\,\sin \left (e+f\,x\right )\right )} \,d x \]

[In]

int((a + a*sin(e + f*x))^(1/2)/(sin(e + f*x)*(c + d*sin(e + f*x))),x)

[Out]

int((a + a*sin(e + f*x))^(1/2)/(sin(e + f*x)*(c + d*sin(e + f*x))), x)